Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and least-squares-planes data have been deposited with the IUCr (Reference: FG1121). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). J. Chem. Soc. Chem. Commun. pp. 1724–1725.
- Beyer, E. M. & Blomstrom, D. C. (1980). *Plant Growth Substances* 1979, edited by F. S. Koog, pp. 208–218. New York: Springer-Verlag.
- Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539-2543.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1989). XEMP. Empirical Absorption Correction Program. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1991). XDISK. Data Reduction Program. Version 3.11. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Thomson, J. S., Harlow, R. L. & Whitney, J. F. (1983). J. Am. Chem. Soc. 105, 3522–3527, and references therein.

Acta Cryst. (1996). C52, 806-807

Diperchlorato[(1RS,4RS,5SR,7RS,8SR,11SR,-12RS,14SR)-(5,7,12,14-tetramethyl-1,4,8,11tetraazacyclotetradecane)]copper(II)

Arlohun Wang,^{*a*} Tsong-Jen Lee,^{*a*} TA-Yung Chi,^{*b*} Fen-Ling Liao,^{*b*} Guey-Sung Liu^{*b*} and Chung-Sun Chung^{*b*}

^aDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, and ^bDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300. E-mail: tjlee@phys.nthu.edu.tw

(Received 7 March 1995; accepted 12 September 1995)

Abstract

The Cu^{II} ion of $[Cu(C_{14}H_{32}N_4)(ClO_4)_2]$ is sixfold coordinated in a distorted octahedral environment with the four N atoms of the macrocyclic ligand equatorial and the two O atoms of the perchlorate ion axial. The quadridentate ligand adopts its most stable conformation with the two six-membered rings in chair forms and the two five-membered rings in *gauche* forms. The complex has a 1*RS*,4*RS*,8*SR*,11*SR* configuration for the four chiral N-atom centres and a 5*SR*,7*RS*,12*RS*,14*SR* configuration for the four chiral C-atom centres.

Comment

There is a great deal of interest in transition metal complexes of 14-membered tetraaza macrocycles because of their particular stereochemistry (Boeyen & Dobson, 1987; Bosnich, Poon & Tobe, 1965). This paper reports the crystal structure of the copper(II) complex of 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane, (I).

The coordination around the Cu^{II} ion is distorted octahedral with the four N atoms of the macrocyclic ligand equatorial and the two O atoms of the perchlorate ions axial. This structure is similar to that of diperchlorato(1,4,8,11-tetraazacyclotetradecane)copper(II) (Tasker & Sklar, 1975). The quadridentate ligand adopts its most stable conformation with the two six-membered rings in chair forms and the two five-membered rings in gauche forms. The Cu-N distances range from 2.023 (3) to 2.030 (3) Å. The long Cu-O bond of 2.539(2) Å is the result of the Jahn-Teller effect. The four methyl groups occupy equatorial positions. The complex has a 1RS,4RS,8SR,11SR configuration for the four chiral N-atom centres and a 5SR,7RS,12RS,14SR configuration for the four chiral Catom centres.

Fig. 1. ORTEPII (Johnson, 1976) drawing of a single molecule with displacement ellipsoids scaled to 30% probability. H atoms are not shown.

Experimental

5,7,12,14-Tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,11diene dihydroperchlorate was prepared according to the reported method (Kolinski & Korybut-Daszkiewicz, 1975). To a suspension of 5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene dihydroperchlorate (10 g) in methanol (200 ml) was added NaBH₄ (5 g) in small portions at 273 K. Upon completion of the addition, the solution was refluxed for 2 h and cooled to room temperature. The white precipitate was filtered off, washed with diethyl ether and dried in vacuo. CuCO₃.Cu(OH)₂ (1.0 g) and (5SR,7RS,12RS,14SR)-5,7,12,14-tetramethyl-1,4,8,11-tetraazacyclotetradecane dihydroperchlorate (1 g) were dissolved in water (100 ml) and stirred for 4 h at 323 K. The blue crystals were recrystallized from water-methanol solution (v/v = 1/1).

Crystal data

$[Cu(C_{14}H_{32}N_4)(ClO_4)_2]$	Mo $K\alpha$ radiation
$M_r = 518.9$	$\lambda = 0.71073$ Å
Monoclinic	Cell parameters from 25
$P2_{1}/c$	reflections
a = 8.678(3) Å	$\theta = 7.65 - 17.27^{\circ}$
b = 16.152(2) Å	$\mu = 1.296 \text{ mm}^{-1}$
c = 8.421(1) Å	T = 300 K
$\beta = 112.75 (1)^{\circ}$	Bulk
$V = 1088.4(5) \text{ Å}^3$	$0.5 \times 0.5 \times 0.5$ mm
Z = 2	Blue
$D_x = 1.583 \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4	2074 observed reflections
diffractometer	$[F > 4\sigma(F)]$
ω –2 θ scans	$R_{\rm int} = 0.0199$
Absorption correction:	$\theta_{\rm max} = 27.5^{\circ}$
ψ scan (North, Phillips	$h = 0 \rightarrow 11$
& Matthews, 1968)	$k = -20 \rightarrow 20$
$T_{\min} = 0.786, T_{\max} =$	$l = -10 \rightarrow 10$
0.999	3 standard reflections
5197 measured reflections	monitored every 100
2492 independent reflections	reflections
•	intensity decay: 0.07%
Definition	

кер	inem	eni

$w = 1/\sigma^2(F)$
$(\Delta/\sigma)_{\rm max} = 0.017$
$\Delta \rho_{\rm max} = 0.76 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.5 \ {\rm e} \ {\rm \AA}^{-3}$
Extinction correction: none
Atomic scattering factors
from SHELXTL/PC
(Sheldrick, 1991)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	x	у	z	U_{eq}
Cu(1)	1/2	1/2	0	0.032 (1)
Cl(1)	0.2686 (2)	0.4615(1)	0.2687 (2)	0.069(1)
N(1)	0.3414 (4)	0.4321 (2)	-0.1975 (4)	0.040(1)
N(2)	0.6776 (4)	0.4103 (2)	0.0786 (4)	0.041(1)
O(1)	0.3929 (5)	0.4378 (2)	0.2149(5)	0.082 (2)

O(2)	0.2487 (9)	0.5484 (3)	0.2494 (9)	0.152 (4)
O(3)	0.2706 (10)	0.4355 (4)	0.4154 (7)	0.164 (4)
O(4)	0.1158 (6)	0.4237 (4)	0.1394 (9)	0.140 (3)
C(1)	0.3287 (6)	0.3419 (3)	-0.1653 (6)	0.054 (2)
C(2)	0.4983 (7)	0.3029 (3)	-0.1128 (6)	0.060(2)
C(3)	0.6236 (6)	0.3226 (2)	0.0660(6)	0.052 (2)
C(4)	0.1777 (5)	0.4748 (3)	-0.2565 (5)	0.054 (2)
C(5)	0.2019 (8)	0.3000 (4)	-0.3258(8)	0.092 (3)
C(6)	0.7742 (8)	0.2634 (3)	0.1149 (9)	0.089 (3)
C(7)	0.7903 (5)	0.4337 (3)	0.2536 (5)	0.055(2)
	Table 2. Select	ed geometri	c parameters	(Å. °)

Cu(1)—N(1) 2.023 (3) N(2)-C(3) 1.482 (5) Cu(1)—N(2) 2.030(3) N(2) - C(7)1 469 (5) Cl(1)—O(1) Cl(1)—O(2) 1.376 (5) 1.501 (7) C(1)-C(2) 1.416 (5) C(1)-C(5) 1.531 (7) Cl(1)-O(3) 1.298 (7) C(2)-C(3) 1.511 (6) CI(1)-O(4) 1.484 (5) C(3) - C(6)1 542 (8) $N(1) \rightarrow C(1)$ 1 495 (5) C(4)-C(7') 1.502(7) N(1) - C(4)1.481 (5) Cu(1)--O(1) 2.539(2) N(1) - Cu(1) - N(2)94.0(1) C(3) - N(2) - C(7)112.8 (3) N(2)—Cu(1)— $N(1^{1})$ O(1)—Cl(1)—O(2) 86.0(1) N(1)-C(1)-C(2) 109.2 (4) 108.3 (4) N(1)-C(1)-C(5) 110.4 (4) O(1) - Cl(1) - O(3)120.0 (4) C(2) - C(1) - C(5)111.3 (4) 116.8 (4) O(2)-Cl(1)-O(3) 112.7 (5) C(1) - C(2) - C(3)O(1) - C(1) - O(4)N(2)-C(3)-C(2) 103.6 (3) 111.0(3) O(2)-Cl(1)-O(4) 106.8 (3) N(2)-C(3)-C(6) 111.3 (4) O(3)-Cl(1)-O(4) 104.2 (4) C(2)-C(3)-C(6) 110.1 (4) Cu(1) - N(1) - C(1)117.0 (2) N(1)-C(4)-C(7') 107.8 (3) Cu(1) - N(1) - C(4)106.4 (2) N(2) - C(7) - C(4')108.4 (3) C(1) - N(1) - C(4)112.7 (3) Cu(1)-O(1)-Cl(1) 132.4 (2) Cu(1) - N(2) - C(3)118.6 (3) N(1) - Cu(1) - O(1)92.9(1) Cu(1)-N(2)-C(7) 105.7 (3) N(2)-Cu(1)-O(1) 85.8(1)

Symmetry code: (i) 1 - x, 1 - y, -z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Program(s) used to solve structure: SHELXTL/PC (Sheldrick, 1991). Program(s) used to refine structure: SHELXTL/PC. Molecular graphics: ORTEPII (Johnson, 1976); SHELXTL/PC.

The authors thank the National Science Council for support under grants NSC84-2113-M007-021 and NSC84-2112-M007-012. They are also indebted to Ms Shu-Fang Tung for collecting the X-ray diffraction data.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: KH1042). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Boeyen, J. C. A. & Dobson, S. M. (1987). Stereochemical and Stereophysical Behaviour of Macrocycles, Vol. 2, pp. 48-70. New York: Elsevier.
- Bosnich, B., Poon, C. K. & Tobe, M. L. (1965). Inorg. Chem. 4, 1102 - 1108
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kolinski, R. A. & Korybut-Daszkiewicz, B. (1975). Inorg. Chim. Acta, 14, 237-245.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1991). SHELXTL/PC. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA,
- Tasker, P. A. & Sklar, L. (1975). J. Cryst. Mol. Struct. 5, 329-344.